Problem 2E, 7

Suppose F is a closed bounded subset of \mathbb{R} and g_{1}, g_{2}, \ldots is an increasing sequence of continuoous real-valued functions on F such that $\sup \left\{g_{1}(x), g_{2}(x), \ldots\right\}<\infty$ for each $x \in F$. Define a real-valued function g on F by

$$
g(x)=\lim _{k \rightarrow \infty} g_{k}(x)
$$

Prove that g is continuous on F if and only if g_{1}, g_{2}, \ldots converges uniformly on F to g.
Proof: Obviously, if the convergence is uniform, g is continuous. Conversely, asumme that g is continuous. For any $x \in F$, there exists an positive integer N_{x} such that $\left|g(x)-g_{N_{x}}(x)\right|<\epsilon$. Since these functions are continuous, there exists some $\delta_{x}>0$ such $\left|g(y)-g_{N_{x}}(y)\right|<\epsilon$ holds for any $y \in\left(x-\delta_{x}, x+\delta_{x}\right)$ holds. By F is closed and bounded, we can take a finite cover $B_{x_{i}}\left(\delta_{x_{i}}\right), i=1, \ldots, k$ of F. Take $N=\max N_{1}, \ldots, N_{k}$, then for $n>N$, we have for any $x \in F,\left|g_{n}(x)-g(x)\right|<\epsilon$. This proves the uniform convergence by definition.

Problem 2E, 8

Suppose μ is the measure on $\left(\mathbb{Z}^{+}, 2^{\mathbb{Z}^{+}}\right)$defined by

$$
\mu(E)=\sum_{n \in E} \frac{1}{2^{n}}
$$

Prove that for every $\epsilon>0$, there exists a set $E \subset \mathbb{Z}^{+}$with $\mu\left(\mathbb{Z}^{+}-E\right)<\epsilon$ such that f_{1}, f_{2}, \ldots converges uniformly on E for every sequence of functions f_{1}, f_{2}, \ldots from \mathbb{Z}^{+}to \mathbb{R} that converges pointwise on \mathbb{Z}^{+}.

Proof: Choose N large enough such that $\frac{1}{2^{N}}<\epsilon$. Set $E=\{1,2, \ldots, N\}$,depening only on ϵ, then $\mu\left(\mathbb{Z}^{+}-E\right)<\epsilon$. Then since E is finite set, so we have that f_{1}, f_{2}, \ldots converges uniformly on E for every sequence of functions f_{1}, f_{2}, \ldots from \mathbb{Z}^{+}to \mathbb{R} that converges pointwise on \mathbb{Z}^{+}.

Problem 3A,3

Suppose (X, \mathcal{S}, μ) is a measurable space and $f: X \rightarrow[0, \infty]$ is an \mathcal{S}-measurable function. Prove that

$$
\int f d \mu>0 \text { if and only if } \mu(\{x \in X: f(x)>0\})>0
$$

Proof. Note that $\{x \in X: f(x)>0\}=\lim _{k \rightarrow \infty}\left\{x \in X: f(x)>\frac{1}{k}\right\}$. Thus

$$
\mu\{x \in X: f(x)>0\}=\lim _{k \rightarrow \infty} \mu\left\{x \in X: f(x)>\frac{1}{k}\right\}
$$

If $\int f d \mu=\int_{f>0} f d \mu>0$, then obviouly $\mu(\{x \in X: f(x)>0\})>0$ for otherwise we are doing integration on a null set.

If $\mu(\{x \in X: f(x)>0\})>0$, then there exists k_{0} such that $\mu\left\{x \in X: f(x)>\frac{1}{k_{0}}\right\}>0$, so

$$
\int f d \mu \geq \int_{f>\frac{1}{k_{0}}} f d \mu \geq \frac{1}{k_{0}} \mu\left\{x \in X: f(x)>\frac{1}{k_{0}}\right\}>0
$$

Problem 3A,4

Give an example of a Borel measurable function $f:[0,1] \rightarrow(0, \infty)$ such that $L(f,[0,1])=0$.
Proof: Define $f(x)=1$ if x is not a rational number; $f(x)=\frac{1}{n}$ if $x=\frac{m}{n},(m, n)=1$. In order to check $L(f,[0,1])=0$, we only need to check that for any interval $(a, b) \subset[0,1]$, the infimum of f on it is 0 . For any $\epsilon>0$, there exists n with $\frac{1}{n}<\epsilon$. Note that the rational number of the form $\frac{m}{l},(m, l)=1, l \leq n$ is finite. But there are infinite rational number on the interval (a, b).This completes the proof.

Problem 3A,8

Suppose λ denotes the Lebesgue measure on \mathbb{R}. give an example of a sequence f_{1}, f_{2}, \ldots of simple Borel measurable function from \mathbb{R} to $[0, \infty)$ such that $\lim _{k \rightarrow \infty} f_{k}(x)=0$ for every $x \in \mathbb{R}$ but $\lim _{k \rightarrow \infty} \int f_{k} d \lambda=1$.

Proof: Define $A=\int_{\mathbb{R}} \exp ^{-x^{2}} d x$. Set $f_{k}(x)=\frac{1}{k A} \exp ^{-\frac{x^{2}}{k^{2}}}$.

Problem 3B,4

- Supose (X, \mathcal{S}, μ) is a measurable space with $\mu(X)<\infty$. Suppose that f is a bounded measurable function. Prove

$$
\int f d \mu=\inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A_{1}, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}
$$

- Show that the conclusion of part a can fail if the hypothesis that f is bounded is replaced by $\int f<\infty$.
- Show that the conclusion of part a can fail if the condition $\mu(X)<\infty$ is deleted.

Proof. • Obviously

$$
\int f d \mu \leq \inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A 1, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}
$$

On the other hand, we can find a sequence of simple function f_{k} satisfying $f_{k}(x) \geq f(x)$ and f_{k} converges uniformly to f. Note that

$$
\int f_{k} d \mu \geq \inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A 1, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}
$$

and by dominated convergence theorem,

$$
\int f d \mu \rightarrow \int f_{k} d \mu
$$

Thus

$$
\int f d \mu \geq \inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A 1, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}
$$

- Take $((0,1), \mathcal{L}, \lambda)$ be our standard Lebesgue measure space and $f(x)=\frac{1}{\sqrt{x}}$. Then $\int f d \lambda<\infty$. But for any \mathcal{L}-partition A_{1}, \ldots, A_{m}, there always exists some A_{i} such that $\sup _{A_{j}} f=\infty$. Thus

$$
\inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A_{1}, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}=\infty .
$$

- Take $((1, \infty), \mathcal{L}, \lambda)$ be our standard Lebesgue measure space and $f(x)=\frac{1}{x^{2}}$. Then for any \mathcal{L}-partition A_{1}, \ldots, A_{m}, there always exists some A_{i} such that $\lambda\left(A_{i}\right)=\infty$. Thus,

$$
\inf \left\{\sum_{j=1}^{m} \mu\left(A_{j}\right) \sup _{A_{j}} f: A_{1}, \ldots, A_{m} \text { is an } \mathcal{S}-\text { partition of } X\right\}=\infty .
$$

Problem 3B,5

Let λ be the Lebesgue measura on \mathbb{R} and $f: \mathbb{R} \rightarrow \mathbb{R}$ is a Borel measurable function such $\int|f| d \lambda<\infty$. Prove that

$$
\lim _{k \rightarrow \infty} \int_{[-k, k]} f d \lambda=\int f d \lambda
$$

Proof: Apply the dominated convergence theorem to $f \chi_{[-k, k]}$. Note $|f|$ is the dominated function.

Problem 3B, 7

Let λ be the Lebesgue measura on \mathbb{R}. Give an example of a continuous function $f:(0,1) \rightarrow \mathbb{R}$ such that $\lim _{n \rightarrow \infty} \int_{\left(\frac{1}{n}, 1\right)} f d \lambda$ exists but $\int_{(0,1} f d \lambda$ is not defined.

Proof: By a change of variable and translation, we consider to construct such example on $(0, \infty)$ such that $\int_{(0, \infty)} f d \lambda$ does not exist but $\lim _{k \rightarrow \infty} \int_{(0,2 k)} f d \lambda$ exists and equal to 0 . Just define that for each positive integer $k, f(x)=1$ for $x \in(2 k-2,2 k-1] ; f(x)=-1$ for $x \in(2 k-1,2 k]$.

